## Alaska Hatchery Research Program: Overview of results and products to date



Sara Gilk-Baumer, Chris Habicht, Kyle Shedd and Bill Templin Division of Commercial Fisheries Alaska Department of Fish and Game Alaska Board of Fisheries Hatchery Committee March 23, 2022

# Background

- Hatcheries began making substantial contributions to harvest in 1980's
- Hatchery production largest part of pink and chum salmon harvest in PWS and chum salmon harvest in SEAK
- Policies and statutes to protect wild fish developed early



Alaska commercial harvest of wild and hatchery salmon, 1900-2021 Vercessi (2022)

# Background

# Large-scale salmon releases raise concerns for effect on wild stocks

Do hatchery fish detrimentally affect productivity and sustainability of wild stocks?

Alaska policy mandates sustainable productivity of wild stocks



# Background

#### Plan:

PNPs proposed that ADF&G organize science panel to design/implement a research project to inform resource management decisions

#### Funding partnership:

State, Operators & Industry

#### **Purpose:**

Examine potential effect of hatchery straying on fitness of wild stocks

- Pink and chum salmon PWS
- Chum salmon SEAK



## Structure of AHRP

#### Science Panel

#### **Current Members**

#### Former Members

Dr. Milo Adkison – UAF Dr. David Bernard – ADF&G Retired Dr. John Burke – ADF&G Retired; SSRAA Dr. John H. Clark – ADF&G Chris Habicht – ADF&G Dr. Jeff Hard – NOAA Fisheries Ron Josephson – ADF&G Retired Dr. William Smoker – UAF Emeritus; PWSAC William Templin – ADF&G Alex Wertheimer – NOAA Fisheries; DIPAC Dr. Peter Westley – UAF Jeff Regnart – ADF&G Steve Reifenstuhl – NSRAA Thomas Sheridan – ADF&G; Silver Bay Seafoods

Eric Volk – ADF&G

## Structure of AHRP



- 1) What is the genetic stock structure of pink and chum in PWS and SEAK?
- 2) What is the extent and annual variability of straying?
- 3) What is the impact on fitness (*productivity*) of natural pink and chum stocks?



# *1) What is the genetic stock structure of pink and chum in PWS and SEAK?*

#### Why is this important?

- Provides perspective on degree of diversity
  - Within area
  - Across the species range
- Insight into temporal changes associated with hatchery production
- Capacity to track future changes



2) What is the extent and annual variability of straying? Part 1 – Patterns and Proportions of Strays

#### Why is this important?

- Prerequisite for genetic risk is interaction while spawning
- Patterns in magnitude and occurrence of straying in space and time inform evaluation of risk





2) What is the extent and annual variability of straying? Part 2 – Run reconstruction 2013-2015

#### Why is this important?

Ocean sampling of salmon entering PWS allows reconstruction of the run of wild and hatchery fish

- Total size of hatchery and wild runs
- Independent estimates of wild escapement
- Number of hatchery strays
- Harvest rates of hatchery and wild runs
- Hatchery donor stray rate

# *3) What is the impact on fitness (productivity) of wild pink and chum stocks?*

#### Why is this important?

Wild stocks of salmon have priority

- <u>Policy for the Management of Sustainable Salmon Fisheries [5 AAC 39.222]</u>: "...wild salmon stocks and fisheries on those stocks should be protected from **adverse** impacts from artificial propagation and enhancement efforts"
- <u>Genetic Policy</u>: "First priority will be given to the protection of wild stocks from possible **harmful** interactions with introduced stocks"

*Harmful & adverse* genetic interactions include:

- Loss of diversity among populations
- Introduction of poorly adapted traits

# Questions?